

The FabCitizen Methodology Marathon, 03.07.2023

Welcome to the Ruhr Metropolitan Area

Hochschule Ruhr West

Ruhr West University of Applied Sciences

History

- Founded in 2009
- Public institution, regional development
- 6000 students, 100 professors and growing ©
- Western Ruhr area (Bottrop, Mülheim)

Focus Areas

- Civil Engineering
- Business Administration International Trade Management & Logistics
- Mechatronics
- Human-Machine-Interaction
- Business Information Systems
- Master Programme Business Administration

Glo-Link

Global Learning, Innovation and Knowledge Management

Researching Processes and Systems in a Global Context

Focus Areas

- Global Process Management
- Collaborative Innovation Management
- Competency Management,
 Knowledge Management and E-Learning
- Open Innovation, Open Educational Resources

Glo-Link

Global Learning, Innovation and Knowledge Management

Researching Processes and Systems in a Global Context

Projects

- Alware: Artificial Intelligence in Schools
- FabCitizen: Citizen Science in Schools
- CoTA: Computational Thinking in Schools
 - Emscher Lippe⁴: Inclusive and Social Innovation / Competence Development
 - ÖWR: Public Knowledge Resources
 - EAGLE: Enhanced Government E-Learning
- Play4Guidance: Simulation Game for Innovation and Entrepreneurship
- iGOAL: startup innovation competencies in intergenerational and global contexts

Our Partners

The FabCitizen project: Outcomes

- Create Pedagogical and Competency frameworks for Citizen Science for grade 5-9 including links to existing curricula
- Establishing FabLabs & Maker Spaces as the main environment for Citizen Science projects
- Build open learning scenarios and materials for Citizen Science from fifth to ninth grade as Open Educational Resources
- Build Learning Scenarios for Citizen Science and in related disciplines (such as biology, geography, ...).

Citizen Science: The FabCitizen view

Involving citizens in science / research projects

• ...from the beginning to the end...

- Involvement of volunteers in the scientific process (Bela, 2017)
- ...defining research questions to evidence-based recommendations

Tool vs. movement vs. social capacity?

Social impact

- Scientific and / or educational objectives?
- Tool for education and educators

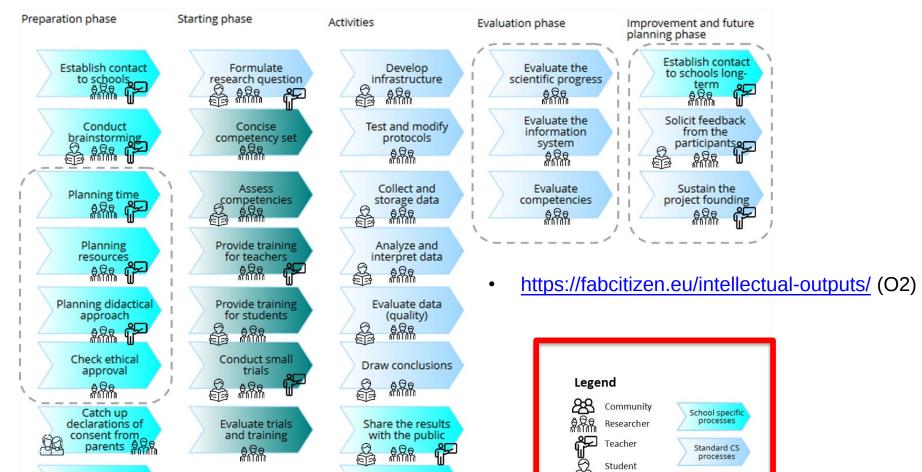
Some sample critical competencies

- Scientific thinking
 - Formulating research questions
- Data handling
 - Interpreting data
- Attitudes
 - Positive attitude towards science
- IT competencies
 - Programming and data handling
- Communication
 - Community involvement
- Sustainability
 - Socially responsible issues (eg food waste)

How to implement this into schools?

- Open Educational Resources
 - Learning materials with an open (creative commons) license
- Open Educational Practices
 - Learning Scenarios = Lesson Plans
 - Experiences
- FabCitizen
 - More than 100 scenarios in different subjects
 - Combining science, IT and citizen science
 - https://fabcitizen.eu/learning-scenarios/

The Key Question


How to develop a Citizen Science project?

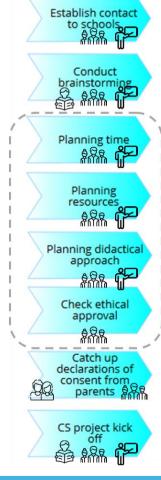
CS project kick

Workshop Method

Competency

Parents

orientated


processes

Conduct a final

event

Preparation phase

Workshop Method

- Topic should fit the subject-related curriculum
- Consider cross-subject teaching
- Resources
 - IT infrastructure
 - Consider
- Didactical approach
 - Inquiry-based learning, service learning, project-based learning
- Check data usage, privacy
- Ethical statement for data on participants
- Parents consent

Starting phase

Conduct small

Evaluate trials and training

- Educational research question
- Competencies
 - Scientific competencies
 - Data handling
 - CS competencies
 - IT competencies
 - Attitudes!
- Training find / modify / provide Open Educational Resources
- Try out if it works....

Activities

Collect and storage data

Analyze and interpret data

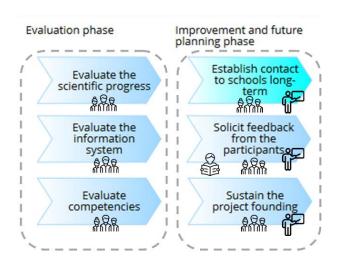
Evaluate data (quality)

Draw conclusions

Conduct a final event

- Data collection
- Data storage / protection
- Data analysis / methods / tools

Stakeholder involvement


- Businesses
- Associations
- Citizens / community
- Parents

In many cases

Pre-moduls on data handling

- Evaluation on multiple levels
 - Stakeholder involvement
- Planning continuous activities
- Sharing, sharing, sharing!
- Have fun ☺

Task 1: Brainstorming on Citizen Science

Discuss in groups of 4 people a possible Citizen Science projects with the following constraints

- Topic is for educational purposes (preferably in between grades 5-10)
- Topic is related to food waste / nutrition / ...
- Topic is fun :-)
- The topic should be defined in 1-3 research questions

•

List possible topics here:

• ...

• ...

• ...

•

Research Questions:

•

• ...

•

Task 2: What are the main competencies / learning outcomes in such a project?

- The following areas should be covered:
 - Food waste / subject-related competencies
 - Scientific thinking (e.g. formulating research question, organizing experiments, ...)
 - Data handling (e.g. collection, using excel to cluster data)
 - Attitudes
 - Communication (e.g. to involve families)
- Possible competencies: https://fabcitizen.eu/wp-content/uploads/2022/01/Competency-framework-CS-DL-SL-competencies.pdf

•

Task 3 What are the target groups / communities who could be involved?

- Consider the primary target groups (participating in the full process) as well as potential supporters (helping, supporting, ...).
- Sample target groups are
 - Students between grade x and y
 - Teachers from subject A and B
 - IT expert
 - Parents
 - School administrators
 - Enterprises
 - NGOs
 - **–**

Task 4.1 Describe the phases / learning activities and the outcomes

- Please try to develop a rough structure of your CS project.
 Also, relate again or refine the learning objectives / outcomes addressed in task 2.
- Possible learning activities are
 - Contextualization setting the context for the topic
 - Self study exploring learning materials / texts for certain topics
 - Defining research question
 - Planning experiments
 - Learning to develop an app
 - Reflecting
 - Collecting / analyzing / interpreting data
 -<u>.</u>

Task 4.2 Collect possible Open Educational Resources

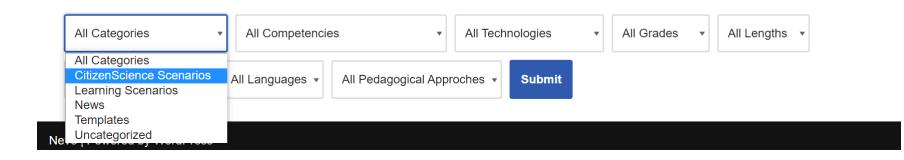
- There are many resources around which can be re-used, adapted and modified freely. Check out for example
 - http://cota-project.eu (on Basic Digital Competencies)
 - http://fabcitizen.eu (on CS scenarios, also App Inventor issues)
 - https://www.fao.org/save-food/news-and-multimedia/news/newsdetails/en/c/1156940/ readers on food waste for children

_

Task 5: Create your CS outline and project plan

Task 6 Realize the project

Task 7: Validate and reflect


Find our scenario

- https://fabcitizen.eu/search-learning-scenarios-in-progress-2/
- Search for Citizen science scenarios

Search Learning Scenarios

On this page you can search for all Learning Scenarios and other website content. For example choose your preferred language from the drop down menu.

Useful references

- Bela, G., Peltola, T., et al (2016). Learning and the transformative potential of citizen science. Conservation Biology, 30(5), 990-999.
- Burgess, H. K., DeBey, L. B., Froehlich, H. E., Schmidt, N., Theobald, E. J., Ettinger, A. K., ... & Parrish, J. K. (2017). The science of citizen science: exploring barriers to use as a primary research tool. Biological Conservation, 208, 113-120.
- Eitzel, M. V., Cappadonna, J. L., Santos-Lang, C., Duerr, R. E., Virapongse, A., West, S. E., ... & Metcalfe, A. N. (2017). Citizen science terminology matters: exploring key terms. Citizen Science: Theory and Practice, 2(1).
- European Association for Citizen Science (EACS) (2015): Ten Principles for Citizen Science.
- Eyler, J. S. (2000). What Do we most need to know about the impact of Service-Learning on Student Learning?, Michigan Journal of Community Service Learning, 2000, pp. 11-17.
- Furco, A. "Service-learning: a balanced approach to experiential education". DC: Corporation for National Service, 1996.
- Gelmon, S. B., Holland, B. A., & Spring, A. (2018). Assessing service-learning and civic engagement: Principles and techniques. Stylus Publishing, LLC.
- Herodotou, C., Sharples, M., & Scanlon, E. (Eds.). (2017). Citizen inquiry: synthesising science and inquiry learning. Routledge.
- Herodotou, C., Aristeidou, M., Sharples, M., & Scanlon, E. (2018). Designing citizen science tools for learning: lessons learnt from the iterative development of nQuire. Research and Practice in Technology Enhanced Learning, 13(1), 1-23.
- Jacoby, B. (2015). Service Learning Essentials Questions, Answers and Lessons Learned, "San Francisco: Jossey-Bass a Wiley Brand.
- Keders, L., Schäfer, M., & Konopek, A. (2019). "Integrales Service Learning, ein interdisziplinäres Lehrkonzept." In B. Meissner, C. Walter, B. Zinger, J. Heubner, & F. Waldherr (Eds.), Tagungsband zum 4. Symposium zur Hochschullehre in den MINT-Fächern (pp. 128–137). Technische Hochschule Nürnberg.
- Konopek, A.; Hellwig, L. and Schäfer, M. (2018). A Possible Ubiquitous Way of Learning within a Fab Lab The Combination of Blended Learning and Implementation-oriented Learning. In Proceedings of the 10th International Conference on Computer Supported Education Volume 2: CSEDU, ISBN 978-989-758-291-2, pages 265-271.
- Mandinach, E. B., & Gummer, E. S. (2013). A systemic view of implementing data literacy in educator preparation. Educational Researcher, 42(1), 30-37.

Useful references

- Nold, C., Sheppard, A., Roche, J., Bell, L. (2019) EU-Citizen.Science: D5.1 Report on Training Needs, UCL, London.
- Perelló, J., Ferran-Ferrer, N., Ferré, S., Pou, T., & Bonhoure, I. (2017). High motivation and relevant scientific competencies through the introduction of citizen science at Secondary schools: An assessment using a rubric model. In Citizen Inquiry (pp. 150-175). Routledge.
- Phillips, T., Porticella, N., Constas, M., & Bonney, R. (2018). A framework for articulating and measuring individual learning outcomes from participation in citizen science. Citizen Science: Theory and Practice, 3(2).
- Queiruga-Dios, M. Á., López-Iñesta, E., Diez-Ojeda, M., Sáiz-Manzanares, M. C., & Vázquez Dorrío, J. B. (2020). Citizen Science for Scientific Literacy and the Attainment of Sustainable Development Goals in Formal Education. Sustainability, 12(10), 4283.
- Mandinach, E. B., & Gummer, E. S. (2013). A systemic view of implementing data literacy in educator preparation. Educational Researcher, 42(1), 30-37.
- Nistor, A., Clemente-Gallardo, J., Angelopoulos, T., Chodzinska, K., Clemente Gallardo, M., Gozdzik, A., ... & Micallef Gatt, A. D. (2019). Bringing Research into the Classroom—The Citizen Science approach in schools. Scientix Observatory.
- Nov, O., Arazy, O., & Anderson, D. (2014). Scientists@ Home: what drives the quantity and quality of online citizen science participation?. PloS one, 9(4).
- Sagy, O., Golumbic, Y. N., Abramsky, H. B. H., Benichou, M., Atias, O., Braham, H. M., et al. (2019). Citizen science: An opportunity for learning in the networked society. In Learning In a Networked Society (pp. 97-115). Springer, Cham.Shah, H. R., & Martinez, L. R. (2016). Current approaches in implementing citizen science in the classroom. Journal of microbiology & biology education, 17(1), 17.
- Twidale, M. B., Blake, C., & Gant, J. P. (2013). Towards a data literate citizenry.
- Wolff, A., Gooch, D., Montaner, J. J. C., Rashid, U., & Kortuem, G. (2016). Creating an understanding of data literacy for a data-driven society. The Journal of Community Informatics, 12(3).

Ideas

- Food within the political system
- Food in the school cantine
- Food waste for little kids and their parents behavior / communication
- Food literacy, co-creating information
- Food waste how to make food appealing
- Sustainability rooftop organic garden, local future plants in relation to climate change

https://tinyurl.com/fcmarathon2023

Contact us: jan.pawlowski@hs-ruhrwest.de

https://fabcitizen.eu/intellectual-outputs/

(The full model: Output O2)